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摘 要

本論文提出了一種程序化生成動作控制器的方法。我們使用了計算流體

力學 (Computational fluid dynamics) 方法，模擬流體與水下游泳者間的

相互作用，並使用深度強化學習，學習出真實的游泳者的運動動作。論

文中提出的目標函數 (Loss function) 以及為其設計的課程 (Curriculum

learning)，大幅提升了最佳化的效率和探索出的動作的有效性。然後，我

們實施了策略蒸餾，將學到的游泳策略轉移到神經網路動作控制器上。最

後產出的動作控制器能夠從學習出的游泳策略所產生的資料集中，學習到

流體動力學的資訊，並且能夠透過連續當前狀態預測下一幀的狀態產生真

實且具互動性的游泳運動。我們能夠經由此學習出的動作控制器，生成出

足夠敏捷且可控制的游泳動作，使其能快速應對使用者所期望的輸入。
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Abstract

We propose an approach to generate the motion controllers procedurally.

The simulation framework uses computational fluid dynamics (CFD) to

simulate the two-way coupling interactions with the underwater swimmer

and deep reinforcement learning to learn the realistic locomotion of the

swimmer. Our proposed loss function and curriculum learning method sig-

nificantly improve the efficiency of the learning process and the motions’

effectiveness during exploration. In the second stage, we enforce a pol-

icy distillation to transfer the learned swimming policy to a neural motion

controller. The resulting motion controller learns the dynamics implicitly

from the dataset generated through the learned swimming policy and can

synthesize realistic interactive animations by predicting the next state at

each frame according to the current state. With the learned motion con-

troller, we are able to generate swimming movements that are more agile

and interactable with given user inputs.
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Chapter 1 Introduction

Interactive character animation is essential in the entertainment industry,

such as in video games and virtual worlds. Traditionally created from sets

of motion capture data, underwater motion capturing clips and the setup for

capturing are hard to acquire. The requirement for real-world references

makes it hard to animate unseen shapes or adapt to changes in configura-

tions such as body weights or a dynamic environment.

On the other hand, physically based simulated model can yield con-

vincingly realistic results and is applicable to wide variety of shapes, but

Computational Fluid Dynamics (CFD) methods are computationally ex-

pensive for interactive applications and massive swarm simulations. There

exists several methods using simplified fluid dynamics models to simulate

swimming motions, but the lack of flow information will make it lose a bit

of realism and can’t apply to those swimmers whose movement heavily de-

pend on the flow interaction. Because of the complicity and chaotic nature

of fluid dynamics, and numerical errors in physic simulation models.

Under this setup, it is presumably difficult for RL-based methods to

explore the simulation space effectively since the sampling-based explo-

ration often fails to produce accurate controls and unsatisfying results, such

as noisy, meaningless motions that are unnatural or inefficient enough. Ul-

timately, RL-based methods are still relevant in optimization problems like

this and flexible to deploy on diverse simulation environments.

In this thesis, we aim to optimize swimming motions under a fluid sim-

ulation environment and create a motion controller suitable for applications
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that require more responsive and precise manipulations. We present a sys-

tem to learn the interactive motion controllers for different shape designs

unsupervisedly. The learning process is realized by training a gait policy

network to generate plausible swimming patterns for the given shape, then

using the trained network to generate a motion dataset and create a motion

control model that can capture the essence of those generated motions and

guarantee the motions are responsive to the control input. We evaluate our

RL training pipeline with various swimmer shapes and compare the results

of different motion controllers on the reproducibility of the dataset and the

control responsiveness.

The main contributions of our research are:

• We present the learning framework that improves the effectiveness of

training a deep reinforcement learning agent to explore the physically

simulated environment.

• We introduce our realistic swimming motion dataset to deep motion

matching methods and evaluate the realism and agility of different

motion control schemes.
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Chapter 2 Preliminaries

Our work is built on multiple fields, and we will briefly introduce those

researches related to ours on topics from gait optimization tomotion control

and underwater swimmer simulation.

2.1 Physics-based Character Control

Recent motion controllers often use the high-low-level controller scheme

[1], [2]. The low-level controller learned a motion manifold with local fea-

tures such as joint positions, joint velocities and local environment infor-

mation to map control input to proper motion and maintain body balance.

Low-level controllers are usually learning a motion manifold by imitat-

ing motion capture data. While the high-level controllers respond to path

planning to achieve various control tasks by giving orders to the low-level

controller.

In contrast to the model-free RL used in the works mentioned above,

there are model-based methods [3]. Instead of sampling only by interacting

with the world, they trained a world model to learn the dynamics explicitly,

which will be further used to train the control policy.

Unlike the aforementioned high-low level controller schemes, V. Tsou-

nis et al. [4] first trained their high-level controller using the Convex Reso-

lution Of Centroidal dynamics trajectories method (CROC) [5] mentioned

in their work. This way, they separate the high-level controller from in-

teracting with the simulation and the low-level controller, allowing both
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controllers to be trained independently, thus mitigating the explore com-

plexity. But the simplified dynamic model results in the burden of finding

the fully dynamic and optimal motions to the low-level controller.

Other works tackle the controller training problem by combining tra-

jectory optimization to optimize the motion controller in fashions like V.

Tsounis et al. [4]. Trajectory optimization methods can be categorized into

forward shooting methods and collocation methods. The former optimizes

the trajectory through forward integration in time. Systems like fluid dy-

namics that are highly dependent on the previous states will be hard to

converge and prone to suffer from stacking in the local maximum, similar

to the exploration of model-based RL methods. The latter solves the tra-

jectory problem for all states simultaneously and usually converges much

faster, but it does not guarantee feasibility since since feasibility is consid-

ered to be a soft constraint. Moreover, collocation trajectory optimization

methods require solving the inverse dynamics problem, which might be

complicated to compute depending on the system.

I. Mordatch et al. [6] generated sets of optimized paths by trajectory

optimization and then trained the network through imitation, producing fas-

cinating results with optimal motions. L. Liu and J. Hodgins [7] learned

the basketball dribbling control efficiently by separating the task into lo-

comotion control and arms control since dribbling skills require the arm to

do maneuvers with much more precision. To learn a detailed control policy

for armmotions, they combine trajectory optimization with deep reinforce-

ment learning.

4



2.2 Deep Motion Controller

H. Zhang et al. [8] introduced an architecture using the motion features to

learn the phase transitionswithmixture-of-experts for controlling quadruped

characters. Their system contains a motion prediction network to com-

pute the next state and a gating network to dynamically blend the experts’

weights of the motion prediction network according to the current gait cy-

cle.

For generating a character animation controller with the additional con-

straint of the control responsiveness, K. Lee et al. [9] used a teacher-student

framework. They first train the teacher policy to optimizemotions for time-

critical responsiveness by predicting the trajectory and creating the corre-

sponding motion with the traditional motion matching method. Then use

the trained policy as a data generator to produce the training data with vari-

ous conditions for the student policy. They use LSTM layers for the student

policy to learn with time-series data.

The model proposed by D. Holden et al. [10] is inspired by the tradi-

tional motion-matching algorithm. The traditional motion-matching algo-

rithm searches the database and finds the best-fit motion at runtime. The

database scales linearly with the motion clips, resulting in the trade-off

between the diversity of actions and the runtime performance. They im-

prove the quality of the motion matching result, runtime performance, and

memory usage by replacing the algorithm’s key stages with their neural

networks to exploit the scalability of neural network models. Thus can

store more motion clips without excessive memory usage and loss of per-

formance when searching the database.
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S. Starke et al. [11] presented a deep periodic autoencoder to learn the

periodic features for expressing the spatial-temporal structure of motions.

By combining various downflow tasks, such as motion matching with the

learned features, they demonstrate the effectiveness of the periodic features

in improving the details and the transitions between different types of mo-

tions.

2.3 Swimming Simulation

J. Tan et al. [12] proposed a method to generate realistic swimming anima-

tions, they first present a method to model the two-way coupling simula-

tion, then find the optimal open-loop swimming gait control of the artic-

ulated shape with the Covariance Matrix Adaptation (CMA) optimization

method. Once the respective maneuvers of swimming straight, turning di-

rection, and pitch up and down are learned, the path-following task can be

performed by switching to the best-suited maneuver. S. Min et al. [13] and

P. Ma et al. [14] proposed using differentiable simulation to find the op-

timal swimming motion, P. Ma et al. [14] combined the simulation with

differentiable modeling of the swimmer’s shape and control using a dis-

tribution model, thus achieves to optimizing swimming gait and shapes

simultaneously to find the optimal swimmer design, but they both build

upon the phenomenological fluid simulation model, also mentioned by S.

Min et al. [13] and J. Tan et al. [12] that the simplified model produces

unrealistic results and cannot express interactions of the fluid field, a more

sophisticated fluid model is necessary to simulate the incompressible fluid

for simulating the motions like generating thrust by spurting out the water
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or the passive motion caused by the flows pushing the body.

Swimming simulations are also used for the studying of biological be-

haviors. M. Gazzola et al. [15] and S. Verma et al. [16] both solved the

optimization by applying reinforcement learning methods to explore the

swimming strategy of multiple fish when swimming together.

Regarding the methods of finding the optimal swimming motion, there

are alsomethods focusing on the simulation of schooling behaviors or swarm

simulations. D. Satoi et al. [17] utilized periodic functions to produce

swimming-like motions andmake the fish behave more naturally by adding

randomness in the motion planner, sampled by a probabilistic distribution

considering the schooling behaviors with pipe following, avoidance, ag-

gregation, and directions.

Q. Chen et al. [18] presented the parametric periodic function to model

the flapping animation, and combining the phenomenological aerodynam-

ics tomodel the lift forces from thewind, and use the randomvortexmethod

to add chaotic actions into the system and reproduce the randomness of in-

sect flying.

7



Chapter 3 Method

Our system consists of two stages. First, we use deep reinforcement learn-

ing to find the optimal swimming motion for the given swimmer. Next, we

enforce teacher-student training to adapt the learned policy to two types

of control inputs. We train a motion-matching network using generated

motions from the simulation environment with the transformed control in-

puts. By changing the control input from low-level objectives used for

RL to high-level input as root motion trajectory, in this stage, the student

network is trained using learned result motions of the simulation. There-

fore we can moderate the undesirable noisy behaviors exhibited in the first

stage since the student network doesn’t have to interact with the chaotic and

complex fluid simulation environment and exploit those effective motions

in the training data.

3.1 Gait Policy Learning

We use reinforcement learning to find each swimmer type’s effective swim-

ming motions under the simulation environment. The goal is swimming

toward the target direction, which requires learning suitable propelling and

turning controls. The optimal control problem is modeled as a Markov

Decision Problem (MDP) that aims to maximize the expected trajectory

reward by finding the parameters of the policy πθ(at|st) that outputs the

probability of choosing an action at at state st, defined with states st ∈ S ,

actions at ∈ A, a dynamic function P(st+1|st, at) denoting the probability

distribution of transition to the next state st+1 given the current state and
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action. T is the number of steps in each episode, γ ∈ [0, 1) is the discount

factor and Rt is the reward function respect to st which returns a reward.

J(θ) = Eτ∽pθ(τ)[
T∑
t=0

γtRt] (3.1)

where pθ(τ) = p(s0)
∏T−1

t=0 P(st+1|st, at)πθ(at|st) represents the probabil-

ity distribution over the trajectories τ = (s0, α0, s1, α1, ..., sT−1, αT−1, sT ).

We choose the Proximal PolicyOptimization (PPO) [19]methodwith clipped

loss to train our gait policy network for each swimmer.

As for the simulation environment, We use the method described by J.

Tan et al. [12] to solve the two-way coupling interactions between the in-

compressible fluid and the swimmer expressed in an articulated body. The

two-way coupling is realized by integrating the articulated body and fluid

independently to intermediate states u∗ and q̇∗ where u∗ and q̇∗ are the in-

termediate fluid velocity field and joint velocity expressed in generalized

coordinate. Then solve for the pressure field to satisfy the in-compressible

fluid condition combining multi-body dynamics on the coupled surface si-

multaneously. And the actuation control of the articulated body uses the

Stable Proportional-Derivative(SPD) controller. For more details on this

method, we refer to their original work.

3.1.1 Policy Representation

The gait policy πθ(s̃t, ĉt) takes the concatenated vector of current state s̃t
and the target direction control ĉt as the input observation and outputs an

action vector α∗
t ∈ [0, 1]n. The action vector is then mapped to the joint
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actuation control αt with a linear mapping factuator from [0, 1] to each ac-

tuator’s limit bj ∈ [boundlowerj , boundupperj ], and sent to the SPD controller.

πθ(s̃t, ĉt) → α∗
t+1 (3.2)

αt+1 = factuator(α
∗
t+1; b0, b1, ..., bn) (3.3)

We parameterize the continuous output action space as a multivariate

Gaussian distribution with the diagonal covariance matrix of the standard

deviation σθ, and the mean values output by the Neural Network.

The state is represented as s̃ = {rv, rω, vcom, jp, jv, α}, where rv ∈ R2 and

rω ∈ R1 are the root linear and angular velocity respectively, and vcom is

the center of mass velocity. jp ∈ Rn and jv ∈ Rn are the joint angles and

joint velocities. And α ∈ Rn is the last actuator control vector.

The target control ĉ ∈ R2 is a unit vector pointing to the target direction.

3.1.2 Reward Function

The reward for the gait policy network includes two terms.

r = rtarget + rregularization,

rtarget = rvelocity ∗ rdirection.
(3.4)

where

rvelocity =
⇀
vavg · ˆforward+

⇀
rvel · ˆtarget,

rdirection = |
ˆforward · ˆtarget+ 1

2
|2.

(3.5)
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The target direction term rtarget rewards the agent when moving and

facing towards the target direction, defined as the product of rvelocity and

rdirection. Where ⇀
vavg is the average center ofmass velocity over 30 frames(1

second) duration, and ˆforward and ˆtarget are the swimmer’s forward di-

rection and target direction represented as unit vectors. It amplifies the

penalties along with the training process as the policy becomes better at the

task. Since the movement of the swimmer is unknown at the beginning,

enforcing the multiplicative reward can automatically modulate different

reward terms without manually tuning the weights. V. Tsounis et al. [4]

also mention the effect of multiplicative reward in their work on balancing

among reward terms.

rregularization = renergy + rexploration. (3.6)

The regularization term contains rewards to keep the swimmer’s mo-

tion behaving naturally and encourages policy exploration.

renergy =

−ωenergy ∗ (W −Wbound), ifW ≥ Wbound

0, otherwise
,

W =
∑
i

τiq̇i.

(3.7)

renergy penalizes excessive energy usage, calculated by summing up the

works done by the actuated joints. Wbound is estimated using the torque

limits defined by the user.
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rexploration = ωexploration

∑
i

|qi,t − qi,t−1|. (3.8)

rexploration encourages the exploration by rewarding the agent for changing

the joint positions.

We set ωexploration = 0.1,and ωenergy = 1.0, for all swimmers in our ex-

periments.

3.1.3 Network Training

We train the agent to adapt to various states and targets by initializing the

episode with different position and velocity configurations. And use a retry

mechanism to randomly continue the episode from the previous terminated

point and reset the fluid field when the reward is below average. In this

way, the agent can have a vision of long-term rewards and deal with more

challenging initial states requiring extra exploration.

To prevent the RL agent from getting stuck in the local maximum

caused by the dramatic target direction difference between the agent’s for-

ward direction and the target direction. We ease out the input target direc-

tion using spherical linear interpolation to ensure a smooth transition for

the RL agent.

We also enforce a curriculum learning scheme inspired by W. Yu et

al. [20] to actively apply an aid force to the swimmer to simplify the gait

learning process. Learning motions without the guidance of motion exam-
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ples is considerably difficult.

The aid force is implemented by apply external velocity vext,t to the

swimmer’s root body directly until reaching the desired velocity vε towards

the forward direction. We calculate the magnitude with the proportional

and derivative control.

(3.9)vext,t =

0 , if vε ≤ vfwd,t

−kp(vfwd,t − vε)∆t− kd(vfwd,t − vfwd,t−1), otherwise

where vfwd,t = rv,t · ˆforwardt.

We schedule the curriculum to tune down the effectiveness of vext ac-

cording to the average reward earned to gradually increase the difficulty of

the curriculum for the agent. The exerted power is modified by setting the

coefficients kp and kd of the PD controller.

The curriculum schedule is defined as follows. It will proceed to the

next curriculum and decay the vε the multiplier of 0.5 to reduce the assistant

force if the final average reward reaches 60% of the previous curriculum

after fixed amounts of simulation steps which we consider the policy under

a weaker. Otherwise, if it fails to pass the threshold, we will continue the

current curriculum to let the agent does additional explorations.

Themax andmin values of vε are h
5 and 0.0. h represents the swimmer’s

total length from head to tail.

kp and kd are set to 1.0 and 0.1 in our experiments.

13



3.2 Controller Learning

The controller is trained with supervised learning where the motion se-

quence data are the outcomes generated using the previously trained policy

described in Section 3.1.

We introduce two types of controller networks to learn with the teacher-

student learning scheme, we consider the policy distillation as a motion-

matching problem.

The first controller uses Recurrent Neural Network (RNN) to process

the time-series data with input states defined as the same as the gait policy.

And the motion-matching controller takes trajectories as extra states and

control indicators to capture the sequential information in motion.

3.2.1 Data Generation

As mentioned in Section 1, the fluid flows act chaotically. The quality

of motion will decrease as the complexity of fluid flows escalate through

time due to the overwhelming complex fluid flows that are challenging

for the agent to comprehend compared to the training stage. We want to

sample from steadier states because the motions are more under control,

given that the flow effect in those samples hasn’t grown massively. It is

also more accessible for the controller network to learn the motions without

turbulence induced by previous states.

The generation step is by uniformly sampling the target direction and

the episode length. The RL agent generates the motion sequences with the

14



simulation environment. The next episode uses the last state from the previ-

ous episode as its initial state and repeats this process to generate sequences

of motion data.

At the beginning of each episode, we reset the fluid field to remove

the fluid flows and limit the sequence length to avoid building an over-

complicated environment for the RL agent and the controller.

We will discard the episodes whose overall rewards and increase rate

are below average, and start over with a random initial state.

3.2.2 Direct Distillation Controller

We use an RNN model defined in Figure3.1 for the first controller to im-

itate the behaviors of the motions in the dataset. The network architec-

ture is proposed by K. Lee et at. [9]. It consists of an encoder-decoder

with stacked LSTM layers in the middle. The input state at time t is de-

fined as xrnnt = {rvt , rωt , vcomt , jpt , j
v
t , ĉt} and the output state is yrnnt =

{rvt+1, r
ω
t+1, v

com
t+1 , j

p
t+1, j

v
t+1}. Which is the same as the teacher policy in-

put.

Figure 3.1: The network architecture used to model the direct distillation

controller.
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3.2.3 Motion-Matching Controller

Unlike the previous controller only performs policy distillation with an

identical input scheme to the teacher policy. The motion-matching con-

troller takes high-level states containing past and future trajectories as the

new input state

xcrosst = {rvt , rωt , vcomt , jpt , j
v
t , t

past
t , tdesiredt , tphaset }

, and the output state is

ycrosst = {rvt+1, r
ω
t+1, v

com
t+1 , j

p
t+1, j

v
t+1, t

future
t+1 }. The additional term tprevt+1 ∈

R4fprev is the past trajectory of root positions and velocities relative to the

base frame t from frame t − f ∗ samplerate to t − 1. tdesiredt+1 ∈ R4fdesired

is the desired trajectory according to the user control. tphaset+1 ∈ R4n·w is the

phase trajectory for the phase encoder, contains joint angles jp, joint veloc-

ities jv and the joints’ translational velocities relative to the root where n is

the number of joints and w is the window size of the phase encoder. And

tpredt+1 ∈ R4fpred is the future trajectory predicted by the controller network.

We use a similar network architecture as H. Zhang et al. [8] for our

motion-matching controller where the inputs to the gating network are the

phase features learned by the periodic encoder trained using the method

introduced in [11] by S. Starke et al..

The phase features significantly help to capture the periodic features

and align the motion sequences in time, keeping the detailed movements

exhibited during transitions.

The desired trajectory tdesiredt is created by smoothly interpolating the

target direction and base velocity with the current state. An additional pro-

cess is added to transform the linearly interpolated trajectory into a trajec-
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tory t∗t that is in favor of the motion controller’s training data. Which is

critical for the controller to generate reasonable movements.

We achieve this in two ways. In the first method, we increase the time

vacancy between samples in both training data and the desired trajectory

since the input contains fewer dimensions and leaves more flexibility to

the motion controller, but it requires some fine-tuning to find a balance be-

tween the control accuracy and the motion naturalness. In contrast to the

first method, the second method outputs a detailed desired trajectory ex-

plicitly. It uses a fully connected network to infer a new trajectory given

the linearly interpolated one and the periodic features.

Both controllers are trained with the MSE loss between the predicted states

X and the training data Y .

L = MSE(X,Y ). (3.10)

We will discuss the parameters and comparison of the controllers on

agility in the next section.
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Figure 3.2: The network architecture of theMM controller. Where the deep

periodic encoder [11] is used to extract the periodic features. The trajectory

transform block then takes the linearly interpolated trajectory as input and

outputs a new trajectory t∗t with more realistic behavior. And the motion

controller network [8] takes the periodic feature as the motion feature, the

desired trajectory t∗t , and a state vector to predict the future state ycrosst .
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Chapter 4 Experiments

We implement the deep networks using Pytorch, and the simulation envi-

ronment is built on C++ using the Pinocchio library for rigidbody dynamic

algorithms.

We use theAdamWoptimizer for all training processes. The gait policy

takes at least 16 hours to train about 5, 000, 000 time steps, the computation

is mostly cost by the simulation and depends on the grid resolution, 80 x

80 grid is used in our experiments. The simulation runs single thread on a

desktop with a Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz and training

with a NVIDIA Geforce GTX 1060 6GB graphic card.

The learning rate for the gait policy is 1e−4 and the weight decay is

5e−5. The discount factor is 0.99 and the clip range is 0.2. We use the

batch size 32 episodes with steps size 256, and sample the time steps into

mini-batches of the size 64.

The RNN controllers take 12 hours on average to train, the motion-

matching controller takes 8 to train and the periodic encoder takes 4 to 8

hours.

At runtime, we use the new state base on the controller output state to

integrate the swimmer’s root and joint positions and velocities, then store

the results for the next prediction. And run an online process projecting

the state back to feasible domain form by the training dataset to ensure the

network can perform stably on the fly.

Due to the simulation environment using voxels to compute the fluid
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dynamics, there will be stronger drags for the swimmer on the voxels’ front

sides. Thus, the resulting motion will depend on which direction it is swim-

ming.

We reduce the effects brought by the drag difference by only chang-

ing the orientation of the swimmer and keeping the target direction at 45

degrees since the input states are in local space. In that fashion, we can en-

sure minimal fluid resistance in the target direction, and the drag difference

won’t govern the velocity term in the reward function.

4.1 Motion Distribution

We compute the distribution of the motions’ velocity properties and com-

pare the difference between the simulated motion produced by the gait pol-

icy and the deep controllers. We consider the results generated by the sim-

ulator with the gait policy as the baseline to examine the realism and agility

of the RNN controller and the motion-matching controller.

Fig 4.1 shows the average velocities and standard deviations when ap-

plying different target directions and the time to converge to a stable swim-

ming state. The direct distillation controller (middle) behaves similarly to

the referenced gait policy (left) in comparison to the motion-matching con-

troller (right). It also replicates those inaccurate behaviors from the training

data since they share the same input states, the performance of the resulting

motion generated by the direct distillation controller heavily depends on the

gait policy. Results of the motion-matching controller indicate its motions

converge towards the stable swimming state faster than the others, and the
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velocity distribution is smoother across different target directions, as it was

trained using information from the motions instead of the gait policy for the

control input.

Figure 4.1: Top: Velocity means (red) and standard deviations (blue) to

different target directions. Bottom: The time-to-converge steps to different

target directions.

Figure 4.2: Generated motion sequence of a five-link swimmer turning.

The swimmer turns by bending and undulating to create a smooth turn.

Figure 4.3: Learned turning motion of an alien shape swimmer.
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4.2 Curriculum Learning Effectiveness

We demonstrate the effectiveness of our curriculum design in exploring

the fluid environment with reinforcement learning by comparing it with

the baseline PPO learning method. We compare the effectiveness of the

easiest and the hardest swimmer design in our experiments, the learning

curves and statistics of rewards can be seen in Fig 4.4 and Table 4.2.

Our approach reaches higher rewards and produces higher rewards in

earlier phases, making the policy learning steadier than the baseline PPO

method, the effect is distinguishable as the difficulty grows up. Without

curriculum learning, the gait policy tends to stay still and stuck on the local

maximal.

Figure 4.4: Comparison between baseline PPO and the proposed curricu-

lum learning on different shapes and difficulties. Top: 4-link swimmer

(easy). Bottom: 4-legged swimmer (hard)
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average median max min

4-link w/o 1339.157 1358.581 2954.283 -27.374

4-link w/ 1640.748 1631.555 2895.585 463.5683

4-legged w/o -4.157 -21.382 270.321 -153.938

4-legged w/ 400.809 428.647 911.536 -215.054

Table 4.1: The final reward statistics of each gait policy listed in Fig 4.4.

There is a significant improvement in the average score and max score after

applying our curriculum learning method.

Besides the previouslymentioned ones, there are other shapes and swim-

ming motions explored by us. The goldfish is similar to the five-link swim-

mer with two fins on the sides of the body. These fins give it the ability

to balance the body during swimming and to make sharper turns than the

five-link swimmer.4.6.

Fig.4.7 shows an alien shape swimmer which has two long arms and

a short tail. The symmetric motions of the arms were produced by en-

forcing additional constraints to synchronize the arms’ movements. And

Fig.4.8 shows the four-legged swimmer that also requires gait priors such

as the symmetric constraint to learn swimming motions more effectively.

Given that random sampling is not robust to generate such precise maneu-

vers without the guidance of prior knowledge.
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Figure 4.5: Motion sequence of a swimming five-link swimmer. This type

of swimmer swims forward by undulating its lower body.

Figure 4.6: A goldfish-like swimmer with four links and two fins. Note the

extra two fins help the swimmer to balance the body movement.

Figure 4.7: An alien shape swimmerwhich swimsmainly bywaving its two

arms to create forward thrust and oscillating its tail to maintain direction

and momentum.

Figure 4.8: The four-legged swimmer moves through the fluid using a

breaststroke-style gait. Note there is an extra constraint applied to force

the lower legs in sync.
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4.3 Test on Simplified Hydrodynamics

We test our system in a simplified hydrodynamics simulation environment

to compare the effects on optimizing swimming motions. The simplified

hydrodynamics model calculates the forces acting on the body depending

on the velocity and normal vector on the surface. Without including the

effects from the fluid flows, passive motions like hitting by the fluid flow

from previous steps are missing. And the swimmers exploit the most out

of the simplified model by maximizing the contact surface normal and ve-

locity with the fluid to gain large forces towards the target direction. These

effects result in unnatural swimming motions for the swimmers. How-

ever, with higher simulation resolution, simple shapes such as the five-

link swimmer can still learn sufficiently good results using this simulation

model.

Figure 4.9: Generated swimming motion of an alien shape swims upward.

Figure 4.10: Motion sequence of an alien shape with simplified simulation.
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Figure 4.11: Motion sequence of a 5-link with simplified simulation. Note

both Fig.4.10 and Fig.4.11 demonstrate the artifact of which the body

movement is optimized to best utilize the simplified physic model by maxi-

mizing the surface and velocity of the body parts perpendicular to the mov-

ing direction.

Figure 4.12: Motion sequence of 4-link swimmer attached to a 3D model

in Unity.

Figure 4.13: Screenshots from Unity editor of three sharks swimming to-

wards a glowing pillar. Taken from left: editor view, and right: camera

view.
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Chapter 5 Conclusions

Our proposed system can improve controllability through neural motion

control to process the motion and learn motions beyond the designated tar-

get directions. Moreover, the motion controllers run in real-time since the

computationally expensive fluid simulation is out of the table. And we in-

troduced a curriculum learning algorithm to help the PPO agent explore

more robustly and smoothly with the fluid simulation environment.

The efficiency and stability of our RL-based method are not general

enough to apply to arbitrary given shapes. Constraints of motion priors are

still required in our work to reduce the training difficulty.

For fast iterating the design of our deep network and reward function

and testing other different optimization methods, we only implemented the

system on a 2D simulation environment. However, a 3D environment is

crucial for simulating an accurate motion closer to reality with more surface

area and fluid field to interact. But the training stage of the gait policy

needs a large number of simulations to learn properly with reinforcement

learning. Training with a 3D configuration will be too slow for our system,

so we leave the optimization of the simulation as another future work.

5.1 Future Work

We consider replacing the reinforcement learning with a faster converging

and less unstable algorithm like trajectory optimization or differentiable

dynamics. I. Mordatch et al. [6] and L. Liu and J. Hodgins [7] both pro-
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pose methods that utilized the trajectory optimization and can significantly

improve the performance of the learning process. Differentiable simula-

tion methods are also proven applicable to physic simulation optimization

problems demonstrated by P. Ma et al. [14] and B. Ramos et al. [21].

Also, passing local flow information to the agent lets it fully sense its

surroundings instead of only depending on the kinesthetic states. And ap-

plying the peripheral inputs to the motion controllers can also improve the

results. A motion controller that responds to flow interference is essential

to capture the interaction with a dynamic environment or reproduce accu-

rate schooling behaviors.

And finally, the training dataset can have motions for different tasks to

create a fully controllable character that behaves realistically.

5.2 Limitations

The current fluid simulator could not fully model a realistic underwater

environment, as described in the previous section the use of voxel grids is

not optimal for fluid dynamic optimization.

Our gait optimization does not include various velocity control. The

deep motion controller can only give some levels of velocity control with

the trajectory input and will produce unrealistic results regarding the lack

of motion dataset.

The fluid field is not considered as an input to the agent, the motion

controller is incapable to react to external forces.
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