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Abstract

We propose an approach to generate the motion controllers procedurally.
The simulation framework uses computational fluid dynamics (CFD) to
simulate the two-way coupling interactions with the underwater swimmer
and deep reinforcement learning to learn the realistic locomotion of the
swimmer. Our proposed loss function and curriculum learning method sig-
nificantly improve the efficiency of the learning process and the motions’
effectiveness during exploration. In the second stage, we enforce a pol-
icy distillation to transfer the learned swimming policy to a neural motion
controller. The resulting motion controller learns the dynamics implicitly
from the dataset generated through the learned swimming policy and can
synthesize realistic interactive animations by predicting the next state at
each frame according to the current state. With the learned motion con-
troller, we are able to generate swimming movements that are more agile

and interactable with given user inputs.
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Chapter 1  Introduction

Interactive character animation is essential in the entertainment industry,
such as in video games and virtual worlds. Traditionally created from sets
of motion capture data, underwater motion capturing clips and the setup for
capturing are hard to acquire. The requirement for real-world references
makes it hard to animate unseen shapes or adapt to changes in configura-

tions such as body weights or a dynamic environment.

On the other hand, physically based simulated model can yield con-
vincingly realistic results and is applicable to wide variety of shapes, but
Computational Fluid Dynamics (CED).methods are computationally ex-
pensive for interactive applications and massive swarm simulations. There
exists several methods using simplified fluid dynamics models to simulate
swimming motions, but the lack of flow information will make it lose a bit
of realism and can’t apply to those swimmers whose movement heavily de-
pend on the flow interaction. Because of the complicity and chaotic nature

of fluid dynamics, and numerical errors in physic simulation models.

Under this setup, it is presumably difficult for RL-based methods to
explore the simulation space effectively since the sampling-based explo-
ration often fails to produce accurate controls and unsatisfying results, such
as noisy, meaningless motions that are unnatural or inefficient enough. Ul-
timately, RL-based methods are still relevant in optimization problems like

this and flexible to deploy on diverse simulation environments.

In this thesis, we aim to optimize swimming motions under a fluid sim-

ulation environment and create a motion controller suitable for applications



that require more responsive and precise manipulations. We present a sys-
tem to learn the interactive motion controllers for different shape designs
unsupervisedly. The learning process is realized by training a gait policy
network to generate plausible swimming patterns for the given shape, then
using the trained network to generate a motion dataset and create a motion
control model that can capture the essence of those generated motions and
guarantee the motions are responsive to the control input. We evaluate our
RL training pipeline with various swimmer shapes and compare the results
of different motion controllers on the reproducibility of the dataset and the

control responsiveness.

The main contributions of our research are:

» We present the learning framework that improves the effectiveness of
training a deep reinforcement learning agent to explore the physically

simulated environment.

* We introduce our realistic swimming motion dataset to deep motion
matching methods and evaluate the realism and agility of different

motion control schemes.



Chapter 2  Preliminaries

Our work is built on multiple fields, and we will briefly introduce those
researches related to ours on topics from gait optimization to motion control

and underwater swimmer simulation.

2.1 Physics-based Character Control

Recent motion controllers often use the high-low-level controller scheme
[L], [2]. The low-level controller learned a motion manifold with local fea-
tures such as joint positions, joint velocities and local environment infor-
mation to map control input to proper motion and maintain body balance.
Low-level controllers are usually learning a motion manifold by imitat-
ing motion capture data. While the high-level controllers respond to path
planning to achieve various control tasks by giving orders to the low-level

controller.

In contrast to the model-free RL used in the works mentioned above,
there are model-based methods [3]. Instead of sampling only by interacting
with the world, they trained a world model to learn the dynamics explicitly,

which will be further used to train the control policy.

Unlike the aforementioned high-low level controller schemes, V. Tsou-
nis et al. [4] first trained their high-level controller using the Convex Reso-
lution Of Centroidal dynamics trajectories method (CROC) [5] mentioned
in their work. This way, they separate the high-level controller from in-

teracting with the simulation and the low-level controller, allowing both
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controllers to be trained independently, thus mitigating the explore com-
plexity. But the simplified dynamic model results in the burden of finding

the fully dynamic and optimal motions to the low-level controller.

Other works tackle the controller training problem by combining tra-
jectory optimization to optimize the motion controller in fashions like V.
Tsounis et al. [4]. Trajectory optimization methods can be categorized into
forward shooting methods and collocation methods. The former optimizes
the trajectory through forward integration in time. Systems like fluid dy-
namics that are highly dependent on the previous states will be hard to
converge and prone to suffer from stacking in the local maximum, similar
to the exploration of model-based RL methods. The latter solves the tra-
jectory problem for all states simultaneously and usually converges much
faster, but it does not guarantee feasibility since since feasibility is consid-
ered to be a soft constraint. Moreover, collocation trajectory optimization
methods require solving the inverse dynamics problem, which might be

complicated to compute depending on the system.

I. Mordatch et al. [6] generated sets of optimized paths by trajectory
optimization and then trained the network through imitation, producing fas-
cinating results with optimal motions. L. Liu and J. Hodgins [7] learned
the basketball dribbling control efficiently by separating the task into lo-
comotion control and arms control since dribbling skills require the arm to
do maneuvers with much more precision. To learn a detailed control policy
for arm motions, they combine trajectory optimization with deep reinforce-

ment learning.



2.2 Deep Motion Controller

H. Zhang et al. [8] introduced an architecture using the motion features to
learn the phase transitions with mixture-of-experts for controlling quadruped
characters. Their system contains a motion prediction network to com-
pute the next state and a gating network to dynamically blend the experts’
weights of the motion prediction network according to the current gait cy-

cle.

For generating a character animation controller with the additional con-
straint of the control responsiveness, K. Lee et al. [9] used a teacher-student
framework. They first train the teacher policy to optimize motions for time-
critical responsiveness by predicting the trajectory and creating the corre-
sponding motion with the traditional motion matching method. Then use
the trained policy as a data generator-to produce the training data with vari-
ous conditions for the student policy. They use LSTM layers for the student

policy to learn with time-series data.

The model proposed by D. Holden et al. [[10] is inspired by the tradi-
tional motion-matching algorithm. The traditional motion-matching algo-
rithm searches the database and finds the best-fit motion at runtime. The
database scales linearly with the motion clips, resulting in the trade-off
between the diversity of actions and the runtime performance. They im-
prove the quality of the motion matching result, runtime performance, and
memory usage by replacing the algorithm’s key stages with their neural
networks to exploit the scalability of neural network models. Thus can
store more motion clips without excessive memory usage and loss of per-

formance when searching the database.



S. Starke et al. [11]] presented a deep periodic autoencoder to learn the
periodic features for expressing the spatial-temporal structure of motions.
By combining various downflow tasks, such as motion matching with the
learned features, they demonstrate the effectiveness of the periodic features
in improving the details and the transitions between different types of mo-

tions.

2.3 Swimming Simulation

J. Tan et al. [[12] proposed a method to generate realistic swimming anima-
tions, they first present a method to'model the two-way coupling simula-
tion, then find the optimal open-loop.swimming gait control of the artic-
ulated shape with the Covariance Matrix Adaptation (CMA) optimization
method. Once the respective maneuvers of swimming straight, turning di-
rection, and pitch up and down are learned, the path-following task can be
performed by switching to the best-suited maneuver. S. Min et al. [[13] and
P. Ma et al. [[14] proposed using differentiable simulation to find the op-
timal swimming motion, P. Ma et al. [14] combined the simulation with
differentiable modeling of the swimmer’s shape and control using a dis-
tribution model, thus achieves to optimizing swimming gait and shapes
simultaneously to find the optimal swimmer design, but they both build
upon the phenomenological fluid simulation model, also mentioned by S.
Min et al. [[13] and J. Tan et al. [[12] that the simplified model produces
unrealistic results and cannot express interactions of the fluid field, a more
sophisticated fluid model is necessary to simulate the incompressible fluid

for simulating the motions like generating thrust by spurting out the water



or the passive motion caused by the flows pushing the body.

Swimming simulations are also used for the studying of biological be-
haviors. M. Gazzola et al. [15] and S. Verma et al. [16] both solved the
optimization by applying reinforcement learning methods to explore the

swimming strategy of multiple fish when swimming together.

Regarding the methods of finding the optimal swimming motion, there
are also methods focusing on the simulation of schooling behaviors or swarm
simulations. D. Satoi et al. [[17] utilized periodic functions to produce
swimming-like motions and make the fish behave more naturally by adding
randomness in the motion planner, sampled by a probabilistic distribution
considering the schooling behaviors with, pipe following, avoidance, ag-

gregation, and directions.

Q. Chen et al. []18] presented the parametric periodic function to model
the flapping animation, and combining the phenomenological acrodynam-
ics to model the lift forces from the wind, and use the random vortex method
to add chaotic actions into the system and reproduce the randomness of in-

sect flying.



Chapter 3 Method

Our system consists of two stages. First, we use deep reinforcement learn-
ing to find the optimal swimming motion for the given swimmer. Next, we
enforce teacher-student training to adapt the learned policy to two types
of control inputs. We train a motion-matching network using generated
motions from the simulation environment with the transformed control in-
puts. By changing the control input from low-level objectives used for
RL to high-level input as root motion trajectory, in this stage, the student
network is trained using learned result motions of the simulation. There-
fore we can moderate the undesirable noisy behaviors exhibited in the first
stage since the student network doesn’t have to interact with the chaotic and
complex fluid simulation environment and exploit those effective motions

in the training data.

3.1 Gait Policy Learning

We use reinforcement learning to find each swimmer type’s effective swim-
ming motions under the simulation environment. The goal is swimming
toward the target direction, which requires learning suitable propelling and
turning controls. The optimal control problem is modeled as a Markov
Decision Problem (MDP) that aims to maximize the expected trajectory
reward by finding the parameters of the policy my(a:|s;) that outputs the
probability of choosing an action a; at state s;, defined with states s; € S,
actions a; € A, a dynamic function P(s;.1]s¢, a;) denoting the probability

distribution of transition to the next state s; 1 given the current state and
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action. 7 is the number of steps in each episode, 7 € [0, 1) is the discount

factor and R; is the reward function respect to s; which returns a reward.

T
J(0) = ErepynD>_ 7' RI] (3.1)
t=0

where py(7) = p(s0) [T,y P(51+1]5t, ar)ma(ay|s;) represents the probabil-
ity distribution over the trajectories 7 = (¢, g, S1, 1, -, ST—1, 71, ST)-
We choose the Proximal Policy Optimization (PPO) [[19] method with clipped

loss to train our gait policy network for each swimmer.

As for the simulation environment, We use the method described by J.
Tan et al. [[12] to solve the two-way coupling interactions between the in-
compressible fluid and the swimmer expressed in an articulated body. The
two-way coupling is realized by integrating the articulated body and fluid
independently to intermediate states u™ and ¢* where u* and ¢* are the in-
termediate fluid velocity field and joint velocity expressed in generalized
coordinate. Then solve for the pressure field to satisfy the in-compressible
fluid condition combining multi-body dynamics on the coupled surface si-
multaneously. And the actuation control of the articulated body uses the
Stable Proportional-Derivative(SPD) controller. For more details on this

method, we refer to their original work.

3.1.1 Policy Representation

The gait policy 7y (5, ¢;) takes the concatenated vector of current state 5;
and the target direction control ¢; as the input observation and outputs an

action vector o € [0, 1]". The action vector is then mapped to the joint



actuation control oy with a linear mapping f,ctuator from [0, 1] to each ac-

tuator’s limit b; € [bound""*", bound;""], and sent to the SPD controller.

7Tg(§t, ét) — Ck;_l (32)

Ay = factuator(O‘;_l; b()a bla ) bn) (33)

We parameterize the continuous output action space as a multivariate

Gaussian distribution with the diagonal covariance matrix of the standard
deviation oy, and the mean values output by the Neural Network.
The state is represented as § = {74 7w, Veom, Jp, Ju, O}, Where r, € R? and
r, € R! are the root linear and angular velocity respectively, and v, is
the center of mass velocity. j, € R" and j, € R" are the joint angles and
joint velocities. And a € R" is the last actuator control vector.

The target control ¢ € R? is a unit vector pointing to the target direction.

3.1.2 Reward Function

The reward for the gait policy network includes two terms.

T = Ttarget =+ T'regularization

(3.4)
Ttarget = Twvelocity * Tdirection -
where
Tvelocity — Vavg * forward + Tyel - target,
(3.5)

forvjuard target + 1 9
Tdirection = | 2 ’ .

10



The target direction term 7,,.4.: rewards the agent when moving and
facing towards the target direction, defined as the product of rcjocity and
Tdirection. Where v;)g is the average center of mass velocity over 30 frames(1
second) duration, and f orward and target are the swimmer’s forward di-
rection and target direction represented as unit vectors. It amplifies the
penalties along with the training process as the policy becomes better at the
task. Since the movement of the swimmer is unknown at the beginning,
enforcing the multiplicative reward can automatically modulate different
reward terms without manually tuning the weights. V. Tsounis et al. [4]
also mention the effect of multiplicative reward in their work on balancing

among reward terms.

T'regularization = Tenergy o Texploration - (36)

The regularization term contains rewards to keep the swimmer’s mo-

tion behaving naturally and encourages policy exploration.

—Wenergy * (W - Wbound)a if W > Wbound
Tenergy — )

0, otherwise (3.7)

Tenergy PENAlizes excessive energy usage, calculated by summing up the
works done by the actuated joints. Wj,,,q 1S estimated using the torque

limits defined by the user.

11



Texploration = Wezploration Z‘Qi,t - Qi,t—1|- (38)

7

Texploration €NCOUrages the exploration by rewarding the agent for changing

the joint positions.

We set wWeppioration = 0.1,and wepergy = 1.0, for all swimmers in our ex-

periments.

3.1.3 Network Training

We train the agent to adapt to various states and targets by initializing the
episode with different position and velocity configurations. And use a retry
mechanism to randomly continue the episode from the previous terminated
point and reset the fluid field when the reward is below average. In this
way, the agent can have a vision of long-term rewards and deal with more

challenging initial states requiring extra exploration.

To prevent the RL agent from getting stuck in the local maximum
caused by the dramatic target direction difference between the agent’s for-
ward direction and the target direction. We ease out the input target direc-
tion using spherical linear interpolation to ensure a smooth transition for

the RL agent.

We also enforce a curriculum learning scheme inspired by W. Yu et
al. [20] to actively apply an aid force to the swimmer to simplify the gait

learning process. Learning motions without the guidance of motion exam-

12



ples is considerably difficult.

The aid force is implemented by apply external velocity v, to the
swimmer’s root body directly until reaching the desired velocity v. towards
the forward direction. We calculate the magnitude with the proportional

and derivative control.

0 Jfvo, < U fwd,t
Vextt = (39)
—kp(vfww — UE)At — kd(Ufwd,t — Ufwd,t—l); otherwise

where vyyar = 1o - forward,.

We schedule the curriculum to tune down the effectiveness of v,,; ac-
cording to the average reward earned to gradually increase the difficulty of
the curriculum for the agent. The exerted power is modified by setting the

coefficients k, and k; of the PD controller.

The curriculum schedule is defined as follows. It will proceed to the
next curriculum and decay the v. the multiplier of 0.5 to reduce the assistant
force if the final average reward reaches 60% of the previous curriculum
after fixed amounts of simulation steps which we consider the policy under
a weaker. Otherwise, if it fails to pass the threshold, we will continue the

current curriculum to let the agent does additional explorations.

The max and min values of v. are % and 0.0. h represents the swimmer’s

total length from head to tail.

k, and k4 are set to 1.0 and 0.1 in our experiments.

13



3.2 Controller Learning

The controller is trained with supervised learning where the motion se-

quence data are the outcomes generated using the previously trained policy

described in Section 3.1].

We introduce two types of controller networks to learn with the teacher-
student learning scheme, we consider the policy distillation as a motion-

matching problem.

The first controller uses Recurrent Neural Network (RNN) to process
the time-series data with input states defined as the same as the gait policy.
And the motion-matching controller takes trajectories as extra states and

control indicators to capture the sequential information in motion.

3.2.1 Data Generation

As mentioned in Section 1, the fluid flows act chaotically. The quality
of motion will decrease as the complexity of fluid flows escalate through
time due to the overwhelming complex fluid flows that are challenging
for the agent to comprehend compared to the training stage. We want to
sample from steadier states because the motions are more under control,
given that the flow effect in those samples hasn’t grown massively. It is
also more accessible for the controller network to learn the motions without

turbulence induced by previous states.

The generation step is by uniformly sampling the target direction and

the episode length. The RL agent generates the motion sequences with the

14



simulation environment. The next episode uses the last state from the previ-
ous episode as its initial state and repeats this process to generate sequences

of motion data.

At the beginning of each episode, we reset the fluid field to remove
the fluid flows and limit the sequence length to avoid building an over-

complicated environment for the RL agent and the controller.

We will discard the episodes whose overall rewards and increase rate

are below average, and start over with a random initial state.

3.2.2 Direct Distillation Controller

We use an RNN model defined in FigureB.1 for the first controller to im-
itate the behaviors of the motions in-the dataset. The network architec-
ture is proposed by K. Lee et at. [9]. It consists of an encoder-decoder

with stacked LSTM layers in the middle. The input state at time t is de-

fined as x[™ = {ry,r¥, v j¥ j¢. ¢} and the output state is y;™" =
{ry o, v Jrrs 3t t- Which is the same as the teacher policy in-
put.

|9 - =l2lg

0 o n n n n e} 2

Xt 8_ '8 — — = = -8 8_ Ve
g 2|2 2= =222
= —+ —+ =

Figure 3.1: The network architecture used to model the direct distillation

controller.
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3.2.3 Motion-Matching Controller

Unlike the previous controller only performs policy distillation with an
identical input scheme to the teacher policy. The motion-matching con-
troller takes high-level states containing past and future trajectories as the

new input state

Cross

6 tPaSt tdeszred tphase}

- {Tzqf)ﬂnt ) Comujt 7]757
, and the output state is

Cross

Yi

R*/»e is the past trajectory of root positions and velocities relative to the

_ v w com P . f uture prev
= {ri e vt Jiens Jivs i b The additional term ¢ €

base frame t from frame ¢t — f x samplerate to t — 1. tdesm’d € R/ desired
is the desired trajectory according to-the user control. tfﬁ‘fse € R is the
phase trajectory for the phase encoder, contains joint angles j,, joint veloc-
ities 7, and the joints’ translational velocities relative to the root where n 1s
the number of joints and w is the window size of the phase encoder. And

tffld € R¥/wred is the future trajectory predicted by the controller network.

We use a similar network architecture as H. Zhang et al. [§] for our
motion-matching controller where the inputs to the gating network are the
phase features learned by the periodic encoder trained using the method

introduced in [[11] by S. Starke et al..

The phase features significantly help to capture the periodic features
and align the motion sequences in time, keeping the detailed movements

exhibited during transitions.

The desired trajectory t9¢*"“? is created by smoothly interpolating the
target direction and base velocity with the current state. An additional pro-

cess is added to transform the linearly interpolated trajectory into a trajec-

16



tory t; that 1s in favor of the motion controller’s training data. Which is

critical for the controller to generate reasonable movements.

We achieve this in two ways. In the first method, we increase the time
vacancy between samples in both training data and the desired trajectory
since the input contains fewer dimensions and leaves more flexibility to
the motion controller, but it requires some fine-tuning to find a balance be-
tween the control accuracy and the motion naturalness. In contrast to the
first method, the second method outputs a detailed desired trajectory ex-
plicitly. It uses a fully connected network to infer a new trajectory given

the linearly interpolated one and the periodic features.

Both controllers are trained with'the MSE loss between the predicted states

X and the training data Y.

L=MSE(X,Y). (3.10)

We will discuss the parameters and comparison of the controllers on

agility in the next section.
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traj, —
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Trajectory Transform
P . .past
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Cross

Figure 3.2: The network architecture of the MM controller. Where the deep

periodic encoder [[11]] is used to extract the periodic features. The trajectory

transform block then takes the linearly interpolated trajectory as input and

outputs a new trajectory ¢; with more realistic behavior. And the motion

controller network [8] takes the periodic feature as the motion feature, the

desired trajectory t;, and a state vector to predict the future state y;"*°.
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Chapter 4 Experiments

We implement the deep networks using Pytorch, and the simulation envi-
ronment is built on C++ using the Pinocchio library for rigidbody dynamic

algorithms.

We use the AdamW optimizer for all training processes. The gait policy
takes at least 16 hours to train about 5, 000, 000 time steps, the computation
1s mostly cost by the simulation and depends on the grid resolution, 80 x
80 grid is used in our experiments. The simulation runs single thread on a
desktop with a Intel(R) Core(TM) 17-7700 CPU (@ 3.60GHz and training
with a NVIDIA Geforce GTX 1060.6GB graphic card.

The learning rate for the gait policy is 1e* and the weight decay is
5¢~°. The discount factor is 0.99 and the clip range is 0.2. We use the
batch size 32 episodes with steps size 256, and sample the time steps into

mini-batches of the size 64.

The RNN controllers take 12 hours on average to train, the motion-
matching controller takes 8 to train and the periodic encoder takes 4 to 8

hours.

At runtime, we use the new state base on the controller output state to
integrate the swimmer’s root and joint positions and velocities, then store
the results for the next prediction. And run an online process projecting
the state back to feasible domain form by the training dataset to ensure the

network can perform stably on the fly.

Due to the simulation environment using voxels to compute the fluid
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dynamics, there will be stronger drags for the swimmer on the voxels’ front
sides. Thus, the resulting motion will depend on which direction it is swim-

ming.

We reduce the effects brought by the drag difference by only chang-
ing the orientation of the swimmer and keeping the target direction at 45
degrees since the input states are in local space. In that fashion, we can en-
sure minimal fluid resistance in the target direction, and the drag difference

won’t govern the velocity term in the reward function.

4.1 Motion Distribution

We compute the distribution of the motions’ velocity properties and com-
pare the difference between the simulated motion produced by the gait pol-
icy and the deep controllers. We consider the results generated by the sim-
ulator with the gait policy as the baseline to examine the realism and agility

of the RNN controller and the motion-matching controller.

Fig @4.1| shows the average velocities and standard deviations when ap-
plying different target directions and the time to converge to a stable swim-
ming state. The direct distillation controller (middle) behaves similarly to
the referenced gait policy (left) in comparison to the motion-matching con-
troller (right). It also replicates those inaccurate behaviors from the training
data since they share the same input states, the performance of the resulting
motion generated by the direct distillation controller heavily depends on the
gait policy. Results of the motion-matching controller indicate its motions

converge towards the stable swimming state faster than the others, and the
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velocity distribution is smoother across different target directions, as it was
trained using information from the motions instead of the gait policy for the

control input.
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Figure 4.1: Top: Velocity means (red) and standard deviations (blue) to
different target directions. Bottom: The time-to-converge steps to different

target directions.

Figure 4.2: Generated motion sequence of a five-link swimmer turning.

The swimmer turns by bending and undulating to create a smooth turn.

Figure 4.3: Learned turning motion of an alien shape swimmer.
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4.2 Curriculum Learning Effectiveness

We demonstrate the effectiveness of our curriculum design in exploring
the fluid environment with reinforcement learning by comparing it with
the baseline PPO learning method. We compare the effectiveness of the
easiest and the hardest swimmer design in our experiments, the learning

curves and statistics of rewards can be seen in Fig }.4 and Table §.2.

Our approach reaches higher rewards and produces higher rewards in
earlier phases, making the policy learning steadier than the baseline PPO
method, the effect is distinguishable as the difficulty grows up. Without
curriculum learning, the gait policy tends to stay still and stuck on the local

maximal.

w/o curriculum w/ curriculum

e——reward e=——average e——reward e=——average

w/o curriculum w/ curriculum

em——re\Ward —es—average em——reWard —em—average

Figure 4.4: Comparison between baseline PPO and the proposed curricu-
lum learning on different shapes and difficulties. Top: 4-link swimmer

(easy). Bottom: 4-legged swimmer (hard)
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average median  max min
4-link w/o 1339.157 1358.581 2954.283 -27.374
4-link w/ 1640.748 1631.555 2895.585 463.5683
4-legged w/o | -4.157 -21.382  270.321 -153.938
4-legged w/ | 400.809 428.647 911.536 -215.054

Table 4.1: The final reward statistics of each gait policy listed in Fig }4.4.
There is a significant improvement in the average score and max score after

applying our curriculum learning method.

Besides the previously mentioned ones, there are other shapes and swim-
ming motions explored by us. The goldfish is similar to the five-link swim-
mer with two fins on the sides of the body. These fins give it the ability
to balance the body during swimming and to make sharper turns than the

five-link swimmer4.6.

Fig4.7 shows an alien shape swimmer which has two long arms and
a short tail. The symmetric motions of the arms were produced by en-
forcing additional constraints to synchronize the arms’ movements. And
Fig4.§ shows the four-legged swimmer that also requires gait priors such
as the symmetric constraint to learn swimming motions more effectively.
Given that random sampling is not robust to generate such precise maneu-

vers without the guidance of prior knowledge.
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Figure 4.5: Motion sequence of a swimming five-link swimmer. This type

of swimmer swims forward by undulating its lower body.

e [ s N

Figure 4.6: A goldfish-like swimmer with four links and two fins. Note the

extra two fins help the swimmer to balance the body movement.

T

Figure 4.7: An alien shape swimmer which swims mainly by waving its two

arms to create forward thrust and oscillating its tail to maintain direction

and momentum.

o sln]sls

Figure 4.8: The four-legged swimmer moves through the fluid using a

breaststroke-style gait. Note there is an extra constraint applied to force

the lower legs in sync.
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4.3 Test on Simplified Hydrodynamics

We test our system in a simplified hydrodynamics simulation environment
to compare the effects on optimizing swimming motions. The simplified
hydrodynamics model calculates the forces acting on the body depending
on the velocity and normal vector on the surface. Without including the
effects from the fluid flows, passive motions like hitting by the fluid flow
from previous steps are missing. And the swimmers exploit the most out
of the simplified model by maximizing the contact surface normal and ve-
locity with the fluid to gain large forces towards the target direction. These
effects result in unnatural swimming motions for the swimmers. How-
ever, with higher simulation resolution, simple shapes such as the five-
link swimmer can still learn sufficiently good results using this simulation

model.

Figure 4.9: Generated swimming motion of an alien shape swims upward.

K3

Figure 4.10: Motion sequence of an alien shape with simplified simulation.
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Figure 4.11: Motion sequence of a 5-link with simplified simulation. Note

both FigQt.10 and Figh.11] demonstrate the artifact of which the body

movement is optimized to best utilize the simplified physic model by maxi-
mizing the surface and velocity of the body parts perpendicular to the mov-

ing direction.

A e e S e e

Figure 4.12: Motion sequence of 4-link swimmer attached to a 3D model

in Unity.

Figure 4.13: Screenshots from Unity editor of three sharks swimming to-
wards a glowing pillar. Taken from left: editor view, and right: camera

view.

26



Chapter 5  Conclusions

Our proposed system can improve controllability through neural motion
control to process the motion and learn motions beyond the designated tar-
get directions. Moreover, the motion controllers run in real-time since the
computationally expensive fluid simulation is out of the table. And we in-
troduced a curriculum learning algorithm to help the PPO agent explore

more robustly and smoothly with the fluid simulation environment.

The efficiency and stability of our RL-based method are not general
enough to apply to arbitrary given shapes. Constraints of motion priors are

still required in our work to reduce the training difficulty.

For fast iterating the design of our deep network and reward function
and testing other different optimization methods, we only implemented the
system on a 2D simulation environment. However, a 3D environment is
crucial for simulating an accurate motion closer to reality with more surface
area and fluid field to interact. But the training stage of the gait policy
needs a large number of simulations to learn properly with reinforcement
learning. Training with a 3D configuration will be too slow for our system,

so we leave the optimization of the simulation as another future work.

5.1 Future Work

We consider replacing the reinforcement learning with a faster converging
and less unstable algorithm like trajectory optimization or differentiable

dynamics. I. Mordatch et al. [6] and L. Liu and J. Hodgins [[7] both pro-
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pose methods that utilized the trajectory optimization and can significantly
improve the performance of the learning process. Differentiable simula-
tion methods are also proven applicable to physic simulation optimization

problems demonstrated by P. Ma et al. [[14] and B. Ramos et al. [21].

Also, passing local flow information to the agent lets it fully sense its
surroundings instead of only depending on the kinesthetic states. And ap-
plying the peripheral inputs to the motion controllers can also improve the
results. A motion controller that responds to flow interference is essential
to capture the interaction with a dynamic environment or reproduce accu-

rate schooling behaviors.

And finally, the training dataset can-have motions for different tasks to

create a fully controllable character that behaves realistically.

5.2 Limitations

The current fluid simulator could not fully model a realistic underwater
environment, as described in the previous section the use of voxel grids 1s

not optimal for fluid dynamic optimization.

Our gait optimization does not include various velocity control. The
deep motion controller can only give some levels of velocity control with
the trajectory input and will produce unrealistic results regarding the lack

of motion dataset.

The fluid field is not considered as an input to the agent, the motion

controller is incapable to react to external forces.
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